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ABSTRACT 

This paper reflects, from a computational perspective, on the experience gathered in designing and implementing real-
time control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory.  We review 
the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues 
and solutions that contributed to the system’s low compute-latency.  Additionally, we describe an implementation of 
dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum sustained achievable 
bandwidth on NVIDIA Geforce 8800GTX GPU. 
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1. INTRODUCTION 

Adaptive optics (AO) by its real-time nature entails fast response to wavefront changes.  For an AO system to work well, 
commands sent to actuators changing the surface of a deformable mirror (DM) to provide the necessary compensations 
must be computed while the aberrations are still small.  The primary goal in designing the PALM-3000 real-time control 
(RTC) algorithms is to achieve the highest possible control bandwidth, while assuring stabilit1y and robustness in a wide 
range of atmospheric conditions.  From the computational perspective, this implies lowest possible compute-latency.  
The aim of this paper is to reflect on key design and implementation issues encountered and the solutions developed that 
contributed to meeting the RTC computational requirements. 
 
The remainder of the paper is organized as follows.  The RTC algorithms that serve as functional requirements driving 
the architecture developed are first described in Section 2.  From there it will be evident that the matrix-vector 
multiplication (VMM) operation used for wavefront reconstruction is the computational bottleneck.  Section 3 presents 
the distributed multi-GPU architecture.  Section 4 provides the latency of each algorithm used.  Section 5 describes a 
GPU implementation of VMM optimized specifically for the RTC reconstructor size on the NVIDIA Compute-Unified-
Device (CUDA) architecture[1] and compares its performance to a leading method.  Section 6 concludes the paper.   

2. ALGORITHMS 

The PALM-3000[1] adaptive optics system which has been in operation on the 5.1 meter Hale Telescope at the Palomar 
Observatory since 2011[5], employs a 64x64 subaperture Shack-Hartmann high-order wavefront sensor (HOWFS) for 
measurement, and three adaptive mirrors for correction.  The mirrors include a tip/tilt mirror (TTM), a low-order 
deformable mirror (LODM) of 241 active actuators, and a high-order deformable mirror (HODM) of 3388 active 
actuators.  The two DMs are operated in a woofer-tweeter configuration, with the LODM providing large stroke at low 
spatial frequencies (±2.5 μm surface stroke with 17 actuators across the telescope pupil) and the HODM providing fine 
correction at high spatial frequencies (±0.5 μm surface stroke with 64 actuators across the pupil).   

Figure 1 depicts end-to-end dataflow of the RTC with all computation steps used to convert pixel values from the 
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HOWFS to commands issued to the DMs.  As shown, the raw pixels are read out in frames of 128x128 unsigned 16-bit 
values, background-subtracted and multiplied by the flat field before inputting to the current active centroiding algorithm 
to obtain a vector of 8192 slope measurements or centroids.  Background subtraction, which compensates for the camera 
bias, sky background, and other additive flux, involves simply subtracting a background, or dark, value acquired with no 
guide star light from each raw pixel value.   Flat-field correction, which compensates for individual pixel gain or QE 
variations in the wavefront sensor camera, requires only a multiplication operation per pixel. 
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Figure 1:  PALM-300 Servo Control 

 

The centroid vector is computed with a weighted sum over the flat-fielded pixels, divided by the total light in the 
subaperture.  Equations below show the quad-cell centroiding algorithm used in the RTC.  Therein c denotes the centroid 
vector output, d the centroid offset vector, fmin the user-selectable minimum flux, g the weights +1,+1;-1,-1 and +1,-
1;+1,-1 for resolving x and y slopes, s the pixel values from flat fielding, i the index of subaperture, j the index of pixels 
within a subaperture, and N the total number of subapertures.   

Note the clamping of the denominator to fmin rather than zero.   The effect of this is to retain AO performance for the 
faintest objects rather than simply quitting.  This centroiding technique known as clamped denominator[6] along with 
reconstructor upgrades[7]  have shown performance improvements on sky when operating PALM-3000 on faint targets.  
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Next, the output centroid vector containing 8192 slope measurements (2 per subaperture) is multiplied with the current 
active reconstructor matrix to generate 4096 residuals that estimate the wavefront errors.  Of the 4096 residuals, only 
3388 values go to the HODM servo loop, 241 to the LODM, and 2 to the TTM, to generate the corresponding DM and 
TTM commands, with the remaining values available for diagnostics information. 

Computing the DM actuator command requires the previous timestep actuator command vector, the flatmap voltages to 
which we want the DM to relax in absence of an error signal, the current residual vector from the reconstructor, and two 
servo gain coefficients.  Computing a LODM actuator command requires an additional servo gain coefficient and the 
previous timestep LODM offload vector, which is the projection of the HODM onto the LODM calculated as the product 
of the HODM-to-LODM projection matrix and the HODM actuator command.   

Computing the TTM command requires four servo coefficients, the current residual value, the previous timestep actuator 
command, the previous timestep LODM offload vector, and the previous TTM offload vector which represents the 
projection of the LODM onto the TTM which is calculated by multiplying the LODM-to-TTM projection matrix with a 
LODM actuator command.   

The HODM-to-LODM and LODM-to-TTM projections are combined into one VMM operation of size 256x4096 with 
the estimated wavefront error vector.  Note since this operation is done after the actuator commands have been issued, its 
execution time is excluded from the total compute-latency of the system. 

 

Camera 
mode 

Pupil 
Sampling 

Available 
subapertures 

Nsub 

Illuminated subapertures (>50%) 

No 
obscuration 

Central 
obscuration 

0 64 4096 3145 2800 

1-3, 9 32 1024 792 704 

4-6, 10-11 16 256 200 176 

7-8, 12 8 64 52 48 

 

Table 1: Number of subapertures for various observing modes 

 

There are optimization techniques[8] that can be performed independent of architecture.  First, to minimize idle time, we 
overlap communication with computation, and ensure that the work done is evenly distributed across the system.  
Specifically, transfers of pixels are done via DMA in blocks of half-frames.  This permits calculations to start as soon as 
a block has been received and progress while the second half of pixels making up the frame is read out.  Section 4 
confirms the latency improvement expected of half-frame blocking.  This technique requires one buffer for calculations 
and at least another for transfers.  However, we allocated a ring of buffers for transfer to tolerate occasional jitter due to 
process preemption by kernel activities on standard Linux.  Calculations should therefore be fast enough to catch up 
quickly once the process is unblocked.  Second, we exploit non-blocking communication.  That is, we issue multiple 
asynchronous sends and receives to allow simultaneous transmission and reception of data from multiple sources to 
multiple destinations.  To ensure load balanced, equal but different portions of data are calculated and transferred using 
the same number of instructions.  Toward this end, we divide and coalesce memory fragments, one from each data 



 
 

 

 

product, so that every processing node makes the same minimum number of equal size DMA transfers.  This data 
shuffling in memory is justified since memory bandwidth is orders of magnitude faster than communication bandwidth. 

Contrary to our stated goal of minimizing latency, the current version of the software receives and processes in half-
frames of 64x128 pixels each, regardless of the HOWFS camera mode currently operating.  It also multiplies the 
reconstructor with all subapertures whether illuminated or not.  Thus the vector of measured slopes output by RTC 
centroiding algorithms always contain 8192 elements, in spite of various observing modes with different number of 
subapertures (see Table 1).  Having said that, the number of elements actually computed does vary according to 
observing modes.  VMM is also currently done on dense 4096x8192 matrices, despite the total number of controlled 
actuators, not including those slaved electrically is only 3631 (3388 for HODM, 241 for LODM and 2 for TTM).   
Future versions will correct these issues if funding permits. 

3. ARCHITECTURE 

 
This section presents the architecture of the PALM-3000 computer system and describes how the RTC algorithms are 
mapped and parallelized on the hardware adopted.  The RTC architecture is shown in Figure 2 along with external 
entities that use it.  The system consists of five major functional subsystems, RTC, AODD, AOCA, AODB, and GUI, 
that spread over three separate locations, the cass-cage, the computer room, and the users/observing area, that in turn 
interconnect via 1Gbit Ethernet.  Non-critical or low speed data use this network, while real-time high-speed data go on 
the dedicated fiber link with direct point-to-point connections to the cass cage or via the Quadric switch.   
 
The cass cage holds the optics, DMs, TTM, HOWFS and all hardware that must absolutely be in proximity for proper 
operation such as motors, fiber optic receivers/transmitters, acquisition camera and a Linux PC that hosts the necessary 
device drivers.  The observing area, on the other end, represents the logical location of the users, which may be either 
operators and scientists that control the system via the graphical user interface software provided or external systems that 
interface with PALM-3000 such as TCS, Pharo or P1640. 
 
Shown in the center of the figure is the computer room that houses ten AO system PCs.  Nine computers named pc0 to 
pc8 run the RTC algorithms described, while the 10th named telem hosts the database (AODB) and command/automation 
(AOCA) subsystems.  All ten PCs are HP xw9400 running the standard RedHat Linux 2.6.18 kernel with two dual-core 
processors AMD Opteron 2220 2.8GHz, 128KB L1 cache and 1MB L2 cache per core, 4GB memory DDR2 667MHz, 
and two NVIDIA GeForce 8800GX GPUs of full PCIe x16 bandwidth.  Exceptions are pc0, which has only one GPU, 
and telem, which has 16GB of memory but no GPUs.  All PCs are linked via an ultra-low latency high bandwidth 
Quadrics switch that delivers over 900 MB/s of user-space-to-user-space bandwidth each direction for a total of 14.4 
GB/s of bisectional bandwidth and latency of only 1.8μs. 
 
Pixel values from the HOWFS camera are replicated by the optical splitter and sent to 8 processing nodes (pc1 to pc8) as 
they are read out.  Once one half of the pixels have been received, each GPU computes the same centroids and multiplies 
by a different portion of the reconstruction matrix to obtain a “half-computed” wavefront error (residual) vector for one-
sixteenth of the output actuators.  When this process repeated on the second half of the pixels making up the frame 
completes, the two half-computed residual vectors are summed and then transmitted to the central node (pc0).  Once all 
residuals have been received by pc0, the servo loop begins.  The servo algorithm computes the output actuator 
command, sends it off to the respective mirror, and then calculates the offload projections before repeating the loop on 
the next residual vector. 
 
 



 
 

 

 

Cass Cage Computer Room 

 MOTION & HARDWARE 
             CONTROL 
 
AODD-PC 

   SERVO & REAL TIME 
            CONTROL 
 
PC0 

1Gb-Ethernet 

Observing Room 

GUI 

OPTICAL 
SPLITTER 

HODM 

HOWFS 

LODM 

TTM 

MOTOR 

WLITE 

ACAM 

           WAVEFRONT 
     RECONSTRUCTION 
 
PC1 GPU0 GPU1 

        WAVEFRONT 
     RECONSTRUCTION 
 
PC8 GPU0 GPU1 

           WAVEFRONT 
     RECONSTRUCTION 
 
PC2 GPU0 GPU1 

           DATABASE  
                     &   
   COMMAND CONTROL 
 
TELEM-PC 

   RAID-0 
    DISKS 

GPU0 

PHARO 

TCS 

P1640 

USER 

 

Figure 2: PALM-3000 hardware architecture. HOWFS denotes the high-order wavefront sensor, HODM the high-order deformable 
mirror, LODM the low-order deformable mirror, TTM the  tip/tilt mirror, MOTOR all motors controlled, WLITE the white light 
source, ACAM the acquisition camera, AODD the device drivers, AOCA the command and automation software, TELEM the PC 
hosting the database, AOCA and RAID-0 file system, GUI the graphical user interface provided to control the PALM-3000 system, 
PHARO the Palomar high angular resolution observer, a near-infrared camera built by Cornel University, TCS the telescope control 
system, P1640 the advanced coronagraph and high-spectral imaging system built by American Museum of Natural History, USER any 
process/system subscribing to PALM-3000 data. 

 
pc0 additionally synchronizes and manages all traffic in and out of the eight slaves.  All messages are tagged with a 32-
bit control word containing a session number and a sequence number that uniquely identifies a message in that session.  
Sequence number 0 is reserved for messages containing commands and responses.  Each slave increments its own 
sequence number every time it sends out a new message containing data.  Pc0 uses the sequence numbers to identify and 
coalesce all residuals belonging to the same frame, provided that the data messages have the same current session 
number.  Otherwise, they are dropped which could happen when one slave detects a frame error and notifies pc0 quicker 
than others.  The session number, on the other hand, is incremented by pc0 and broadcasted to the slaves each time all 
synchronize in a rendezvous.  Slaves synchronize in a rendezvous only when commanded by pc0.  Otherwise they run 
freely, even right after they have detected a hardware fault.  All user commands from AOCA go through pc0 which 



 
 

 

 

parses them out to the slaves, waits for the results from each, and replies on their behalf before synchronizing in a 
rendezvous with all of them.   
 
All nine RTC computers log data directly to the RAID-0 system located on telem via AODB, a publish-subscribe 
software layer built in-house from the ground up on top of Berkeley DB[9]  and used by all PALM-3000 software 
components for communication and database services.  To enable seamless distributed processing across machines, we 
use bidirectional proxy components that are interposed between user components and remote provider components. 
 
The RTC software was inspired by the split-phase, event-driven concurrency model of TinyOS[10].  To achieve non-
blocking as dictated by our optimization goal stated earlier, all long latency operations are performed in split-phase, 
meaning the operations are implemented using two functions, one called command which is the request and which 
returns immediately, and the other called event which is signaled upon completion.  Although an execution may be 
rooted in an event (typically representing a hardware interrupt), more often than not, it is rooted in what are called tasks, 
which have no strict timing requirements and are scheduled by a scheduler to run at a later time.  Tasks are a deferred 
computation mechanism.  They run to completion and unlike events, they do not preempt one another.  Events can 
however preempt them.  Any running codes may post (schedule) a task for later execution.  For almost all of the PALM-
3000 software, this split-phase, event-driven execution model suffices.  But to drive multiple GPUs and to avail of the 
parallelism afforded by multiple CPU cores, threads are required.  So we extended nesC[11, 12], the language of PALM-
3000 software, with thread support by enhancing its task and event-signaling model.  Specifically, we introduced a 
mechanism for associating a nesC task with a thread of execution, which may be an existing thread or one newly created 
by the task scheduler.  We use threads like we use external hardware.  In this manner, threads signaling events are akin 
to hardware issuing interrupts.  Hence, events signaled and commands invoked by tasks associated with threads must be 
declared asynchronous (i.e., async in nesC).  We also enhanced the language to allow applications to post a gang of 
tasks, where any number of them could be defined outside the current local scope (i.e., in other components, modules or 
processes).  We use this feature to synchronize and notify components of system-wide events.  One such event is 
application shutdown, which entails closing of all opened Berkeley DB handles.  The same mechanism associating a task 
with a thread of execution is also used to specify any task’s priority, including a pure nesC task.  We chose this approach 
to retain the static race-condition analysis feature of the compiler.  A problematic alternative would be having 
applications deal directly with a thread library. 
 
Like TinyOS, the RTC software is built out of components, which are assembled according to a wiring specification to 
form an application.  That wiring specification, called interface in nesC, is the only access point to components.  We 
designed interfaces to contain only the minimum functionality required for most usage scenarios.  Functions that enable 
reconfiguration and customization are not part of the interface.  Instead they are enabled at runtime via component-
specific command lines switches, environment variables, and configuration files.  For example, on our system, a 
component using the interface to subscribe to remote data deals with only one function to receive the data.  It does not 
make any calls to initialize the providing component that implements the interface, change the subscribed data rate, or 
specify programmatically the whereabouts of the data and its server.  The interface simply does not provide any of those 
functions.  This design approach has resulted in not only a system that is more extensible but also components that are 
simpler to develop. 

4. PERFORMANCE 

Figure 3 lists the execution times in microseconds, averaged over 1 million invocations ignoring the first, of each 
algorithm computed by the RTC as described previously.  It shows clearly the benefit of half-frame blocking over the 
obvious full-frame.  Measuring from the time the last pixel was received by the application up to the instant actual 
commands are ready to be issued to the mirrors, the total elapsed time is 205μs for half-frame blocking versus 281μs for 
full-frame.  Not included in these totals nor shown in the figure are the latencies of interactuator check, the DM driver 
and the offload calculation that follows immediately in parallel.  The actuator check requires 35μs with room for 
improvement.  The DM driver’s latency currently at 125μs is expected to drop down to 25μs later this summer.  The 
offload latency of 80μs, which included 13μs for the launch overhead, is excluded from the total compute-latency 
because the calculation starts after the commands have been issued.  From the transfer times shown, it is clear that 
getting data in and out of GPUs is not of an issue, provided that the input and output buffers were allocated from non-
pageable memory. 



 
 

 

 

 

Figure 3: RTC latencies in microseconds.  Shown is the processing timeline of the RTC servo algorithm for two frame periods at 2 
KHz frame rate.  Measuring from the last pixel received by the application up to the point actuator commands are ready to be issued to 
the mirror, the total latency is 205μs for half-frame blocking and 281μs for full-frame.  Not included in these totals nor shown in the 
figure are the latencies of interactuator check and DM driver.  “Upload All” denotes uploading (GPU-to-host) of all data, which 
include pixels, flux, centroids, and residuals.  The transfer size equals the total divided by the number of GPUs in the system. 

 

5. MATRIX VECTOR MULPLICATION 

This section presents an improved VMM algorithm used by the RTC.  Figure 4 shows the core loop of the code on the 
NVIDIA CUDA architecture.  Table 4 compares its performance with the leading method of Fujimoto[13].  The times 
shown were averaged over 1 million kernel invocations ignoring the first, for several matrix sizes of interest to PALM-
3000, excluding data transfers between CPU and GPU and kernel launch overhead.  The thread blocks used for the 
comparison are 16x4 for the PALM-3000 method and 16x16 as suggested for [13].    

 

Matrix Size    Fujimoto   Palm-3000   Speedup 
 
 
 256 x 4096      75.5       61.0       1.23 
 256 x 2048      40.0       32.0       1.25 
 512 x 4096     150.0      129.0       1.16 
 512 x 2048      92.5       67.5       1.37 

 

Table 4: Matrix-vector multiplication performance comparison. Speedup is the ratio of two times (μs). 

 

As shown, the performance of the RTC method on small matrices is unmatched and due to the superior caching design 
of the GPU texture memory.  For a bandwidth-bounded algorithm like VMM, the execution time can be predicted by the 
equation. 



 
 

 

 

                                    Bandwidth required 
Time  =  Kernel launch overhead  +  __________________ 
       
                                    72 GB/s  

Using our hardware/software setup, the maximum sustained achievable bandwidth reported by bandwidth (an 
application provided in the NVIDIA software development toolkit) is 72GB/s, and the launch overhead 4μs if the kernel 
is launched right after another and 13μs otherwise.  For the matrix size of 256x4096 operated on by each GPU, the RTC 
algorithm attains over 95% of the maximum achievable memory bandwidth of the GeForce 8800GTX GPU, providing 
speedup of 1.23x over [13].  However, for large matrices such as 2048x4096 and 4096x4096 that are not of interest, the 
RTC method is outrun by 10% to 15% respectively. 

 

//  Y = AX 
//  A : matrix cached in texture memory referenced via textureA. 
//  X : vector cached in texture memory referenced via textureX. 
// 
//  This code is illustrative. 
//  Assumed to be launched with RxC threads per block, 
//  and the number of thread blocks equal to heightA/R. 
//   
//  tx, ty : thread id. 
//  bx : block id. 
// 
__shared__ float y[R][C]; 
 
row = bx*R + ty; 
y[ty][tx] = 0; 
 
for (i = 0; i < widthA/4; 
     i+= C) 
  { 
     float4 a = tex2D( textureA, tx+i, row ); 
     float4 x = tex1Dfetch( textureX, tx+i ); 
     y[ty][tx] += a.x*x.x + a.y*x.y + a.z*x.z + a.w*x.w; 
  } 
__syncthreads(); 
 
// Sum y[ty][*] and store result in Y[row] 
// in binary-tree fashion with warp specialization.  
!  

 

Figure 4: Partial kernel codes for matrix-vector multiplication in RTC  

 

6. CONCLUSIONS 

We described the algorithms used for real time control of the PALM-3000 adaptive optics system and presented a 
scalable architecture that satisfies its computational requirements.  The key components we pointed out that contributed 
to the system’s low latency were the optical splitter, the GPUs, and the Quadrics switch.  With larger interconnects and 
additional if not faster GPUs, we expect the architecture could easily support much larger AO systems at higher rates 
and lower VMM latency.  We also presented an improved algorithm for matrix-vector multiplication on the NVIDIA 
CUDA architecture that reaches within 5% of achievable sustained GPU bandwidth and delivers speedup ranging from 
1.16x to 1.37x over a leading method. 
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